Sharp thresholds for constraint satisfaction problems and homomorphisms

نویسندگان

  • Hamed Hatami
  • Michael Molloy
چکیده

We determine under which conditions certain natural models of random constraint satisfaction problems have sharp thresholds of satisfiability. These models include graph and hypergraph homomorphism, the (d, k, t)-model, and binary constraint satisfaction problems with domain size 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coarse and Sharp Thresholds of Boolean Constraint Satisfaction Problems

We study threshold properties of random constraint satisfaction problems under a probabilistic model due to Molloy [11]. We give a sufficient condition for the existence of a sharp threshold that leads (for boolean constraints) to a necessary and sufficient for the existence of a sharp threshold in the case where constraint templates are applied with equal probability, solving thus an open prob...

متن کامل

ar X iv : c s . D M / 0 50 30 83 v 1 2 9 M ar 2 00 5 Coarse and Sharp Thresholds of Boolean Constraint Satisfaction Problems ∗

We study threshold properties of random constraint satisfaction problems under a probabilistic model due to Molloy [11]. We give a sufficient condition for the existence of a sharp threshold that leads (for boolean constraints) to a necessary and sufficient for the existence of a sharp threshold in the case where constraint templates are applied with equal probability, solving thus an open prob...

متن کامل

Algorithmic aspects of graph homomorphisms

Homomorphisms are a useful model for a wide variety of combinatorial problems dealing with mappings and assignments, typified by scheduling and channel assignment problems. Homomorphism problems generalize graph colourings, and are in turn generalized by constraint satisfaction problems; they represent a robust intermediate class of problems – with greater modeling power than graph colourings, ...

متن کامل

The Complexity of Homomorphisms of Signed Graphs and Signed Constraint Satisfaction

A signed graph (G,Σ) is an undirected graph G together with an assignment of signs (positive or negative) to all its edges, where Σ denotes the set of negative edges. Two signatures are said to be equivalent if one can be obtained from the other by a sequence of resignings (i.e. switching the sign of all edges incident to a given vertex). Extending the notion of usual graph homomorphisms, homom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2008